第2章 2変数の関連の記述統計
共分散 \[ s_{xy}=\color{red}{\frac{1}{n}\sum_{i=1}^{n}}(x_{i}-\bar{x})(y_{i}-\bar{y}) \]
積率相関係数 \[ r_{xy}=\frac{s_{xy}}{s_{x}s_{y}}=\frac{\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\bar{x})^2}\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_{i}-\bar{y})^2}}=\color{red}{\frac{1}{n}\sum_{i=1}^{n}}(\frac{x_{i}-\bar{x}}{s_{x}})(\frac{y_{i}-\bar{y}}{s_{y}}) \]
\[\color{red}{z_{i}}=\frac{\color{red}{x_{i}}-\color{blue}{\bar{x}}}{\color{blue}{s_{x}}}=\frac{1}{\color{blue}{s_{x}}}\color{red}{x_{i}}-\frac{\color{blue}{\bar{x}}}{\color{blue}{s_{x}}},\;\;\;\;\;i=1,2,3,...,n\]